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Editorial 
 
s the calendars turn to the year 2020 and “perfect vision” puns begin to saturate 
advertising agencies’ attempts to grab our attention, we too feel it insightful1 to embrace 
the vision-based puns offered by the calendar to situate the work of The Variable alongside 

the daily lives of Saskatchewan teachers. Education, in a general sense, has been thrust into the 
public eye2 with increasing frequency in recent months. In fact, with the pace that news circulates 
in today’s interconnected world, it is nearly impossible to remain blind3 to the very public debates 
in some Canadian provinces about the state of education—although most of the press seems 
more concerned with political optics4 and pocketbooks than with any real concern for teaching 
and learning.  
 
Improvement is often pursued through wide-angle initiatives, as demonstrated by the provincial 
committee convened just this month to develop recommendations on curriculum development 
and high school graduation requirements in Saskatchewan .These simultaneously feel important, 
yet seem to put the focus5 on learning as legislated, leaving the lived experiences of teachers and 
learners in the periphery6. 
 

This leaves teachers in a balancing act, with the wide lens7 of policy and politics on one side of a 
scale counter-weighted by the daily concerns that come with being charged with the education 
of a specific group of learners with specific histories and specific needs. The Variable aims to 
amplify8 and support the daily work of teachers, the stakeholders who are uniquely situated with 
a view9 of the nexus between legislation and lived experience. Ultimately, it is the perspective10 
of the teacher that provides a point of clarity11 we cannot afford to overlook12.  
 

 Nat & Ilona, Co-Editors 

                                                
1 Pun intended. 
2 Pun intended.  
3 Pun intended.  
4 Pun intended. 
5 Pun intended. 
6 Pun intended.  
7 Pun intended. 
8 Token ear-related pun. 
9 Pun intended. 
10 Pun intended. 
11 Pun intended. 
12 Pun intended. 

A 
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My Favourite Lesson 
 

What is Thy Bidding? 
Jared Hamilton 
 

ou and your friends are starting a landscaping company.  You speak with Albert, a 
recently retired landscaper, for things you’ll need to consider when starting your new 
business.  Albert has been in business for over 20 years, and provides you with some 

information on his last two jobs (see Figures 1 and 2 and computations on p. 10-11): 
 

Job # Surface 
Area 

Labor 
Crew 

Job 
Time 

 

Bid Actual 
Cost  

1 674 m2 4 people 6 hours  $13 450.00 $4 482.00 

2 212.75 m2 3 people 4 hours $5 300.00 $1 766.00 

 
Table 1: Albert’s last two jobs 
 
His local supplier sells sod for $250.00 per pallet. One pallet = 48 square metres and takes 
one person approximately 1.5 hours to install.  He pays his employees $18.00 per hour and 
charges each job a fixed operation cost of $300.00. Albert advises the group to do their 
research and build an appropriate business model that accounts for their costs of operation 
and desired profits while being competitive. 
 
The Task 
This activity allows students to create and design a business model for a landscaping 
company.  Using the information provided above, students will: 
 

• be randomly organized into teams of 2-3 and create a business name; 
• develop a model to provide a quote for future potential jobs that needs to account for 

appropriate costs such as labour (wages, overtime, etc.) and materials (sod, fertilizer, 
equipment, etc.); 

• design the quote to provide a margin of profit (students may organize their work on the 
quote sheet provided on p. 9); 

Y 
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• use their model to bid for two upcoming jobs: the first includes measurements, and the 
second is a scaled diagram that needs to be measured (see p. 7 and 8); and 

• provide the bid to the customer in format of a business quote that the surface area of 
job, the approximate time to complete, and the approximate cost. 

 
Curricular Competencies and Content 
 
Curricular competencies include:  
 

• collaboration and problem solving; 
• reasoning and modelling; 
• understanding and solving; 
• communicating and representing; 
• connecting and reflecting; 
• incorporating elements of technology. 
 
Content includes:  
 

• measurement and design (WA 10.41, WA 10.52); 
• rates and proportion (WA 10.103); 
• financial literacy (WA 10.114); 
• numeracy and operations; 
• estimation and rounding. 
 
Assessment 
 

Emerging/
Developing Criteria/Competency Proficient 

 
Communicate ideas and mathematical thinking involved 
in project design 

 

 
Engage in mathematical thinking in choosing what content 
to discuss and explore based upon the design of the project 

 

 
Model mathematics in contextualized experiences such as 
ratio, measurement, finance, numeracy 

 

 
                                                
1 WA10.4: Demonstrate, using concrete and pictorial models, and symbolic representations, 
understanding of linear measurement, including units in the SI and Imperial systems of 
measurement. (Ministry of Education, 2010, p. 29) 
2 WA10.5: Demonstrate using concrete and pictorial models, and symbolic representations, 
understanding of area of 2-D shapes and surface area of 3-D objects including units in SI and Imperial 
systems of measurement. (Ministry of Education, 2010, p. 31) 
3 WA 10.10: Apply proportional reasoning to solve problems involving unit pricing and currency 
exchange. (Ministry of Education, 2010, p. 35) 
4 WA10.11: Demonstrate understanding of income including: wages; salary; contracts; self-
employment; gross pay; net pay. (Ministry of Education, 2010, p. 36) 
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Figure 1: Job # 1 

 

 
 
Figure 2: Job # 2 
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House Lot #1: 
Lot dimensions: 20 m x 40 m 
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House Lot #2: 
Blueprint drawing 
Scale 1 cm : 3.5 m 
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Quote Sheet for Lot # _______ 
 
Company Name: ________________________________ Date: _________________________ 
 
Contractors: ____________________   _____________________   ______________________    
 
 

Area of worksite: _____________________ 
 
 
 

Rationale: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Estimated time: ______________________ 
 
 

 
Rationale (based on previous jobs): 
 
 
 
 
 
 
 
 

Estimated cost: _______________________ 
 
 

 
Rationale (based on previous jobs): 
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Albert’s Bids - Rationale 
Albert’s bids were developed according to the following rationale, with calculations 
included below: 
 
• crews consist of two to four people (otherwise, a second truck is needed, which adds an 

extra $100.00 to the bid); 
• 1-1.5 hours per person are added on a job with many irregular cuts; 
• a fixed operation cost of $300.00 is added to cover expenses such as fuel, broken 

equipment, etc.; 
• irregular shapes are squared off for quick and easy calculation (the faster the quote is 

sent to the customer, the more likely the company will win the bid); 
• a 5% error is assumed for the sod size; 
• the bid is calculated as cost ´ 3 (this covers cost, taxes, and the business owner’s salary). 
 
It is intended that the teacher use this information as necessary to guide students’ 
discussion about developing a bid and to help them identify costs they may not have 
considered, but also that the teacher allows students to develop their own models using the 
information provided by Albert in Table 1 and in Figures 1 and 2. 
 

 
 
Figure 3: Calculations for Lot # 1 
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Figure 4: Calculations for Lot # 2 

 
 

Jared Hamilton is a numeracy & technology teacher in Northern British Columbia. 
Over the past decade he has taught in both Canada and the United Kingdom, and 
is starting his phD in education. Interests include his family, learning with his 
students, the Edmonton Oilers, coffee and donuts.  
 
 

 
 
 

Contribute to this column! 
The Variable exists to amplify the work of Saskatchewan teachers and to facilitate the 
exchange of ideas in our community of educators. We invite you to share a favorite lesson 
that you have created or adapted for your students that other teachers might adapt for their 
own classroom. In addition to the lesson or task description, we suggest including the 
following: 
 

• Curriculum connections 
• Student action (strategies, misconceptions, examples of student work, etc.) 
• Wrap-up, next steps 
 

To submit your favourite lesson, please contact us at thevariable@smts.ca. We look forward 
to hearing from you! 



 

12 The Variable, Volume 5, Issue 1 

 
 
 
 
 

 
 

Alternate Angles 
 

Alternate Angles is a column on problems from multiple perspectives: various methods that could be 
used to solve them, insights we get from their solution, the new paths that they can lead us to once 
they have been solved, and how they can be used in the classroom. 
 

 
 

A Slippery Slope  
Shawn Godin 
 

elcome back and Happy New Year, problem solvers! Last issue, I left you with the 
following problem: 
 

The following information is known about Δ𝑂𝐵𝐶: 
 

• O is at the origin, and points B and C lie in the first quadrant;  
• 	Δ𝑂𝐵𝐶 is an isosceles right triangle with OB = BC and ∠𝑂𝐵𝐶 = 90°; and  
• the hypotenuse OC is on a line segment with slope 3.  

 
Determine the slope of line segment OB. 

 
This problem was a Problem of the Week from the Centre for Education in Mathematics 
and Computing (CEMC) at the University of Waterloo. The CEMC produces competitions 
as well as resources for teachers and students in the areas of mathematics and computer 
science. The Problem of the Week is one of those resources. It is released weekly, with a 
solution (and new problem) provided the following week. The problems come in five 
groups based on the grades of the targeted students: Group A – Grades 3 and 4; Group B – 
Grades 5 and 6; Group C – Grades 7 and 8; Group D – Grades 9 and 10; and Group E – 
Grades 11 and 12. In many cases, the problems for many of the groups have similar contexts, 
so you have access to easier and more challenging versions of the problem you are 
considering. The problem above was a problem from the 2018-2019 school year for Group 
E. You can check out the Problems of the Week and other CEMC resources at 
www.cemc.uwaterloo.ca. 
 

W 
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One way to start this problem is to physically draw the 
triangle in question. In Figure 1, I have drawn a line of 
slope 3 that passes through the origin on graph paper. 
Then, using a 45º- 45º - 90º triangular ruler found in a 
standard “math set,” I drew in our triangle. By 
searching for points on OB, it looks like (4, 2) is on the 
line, so the slope of OB is ,

-
. 

 
In the first solution, the accuracy of my answer depends 
on the accuracy of my diagram. What this allows me to 
say is that the slope is probably around  ,

-
, but my result 

may not be exact. Could I tell the difference between a 
slope of 0.47 and a slope of  ,

-
 on my diagram? Probably 

not. So, lets dig a little deeper. 
 
We will use some geometric properties to aid our 
solution. A useful property of isosceles triangles is the 
fact that the angle bisector of the apex (the “non-equal” angle, in a non-equilateral isosceles 
triangle, as in our case) coincides with the median from the apex, the altitude from the apex, 
and the perpendicular bisector of the base (the “non-equal” side). Using this, we can use 
dynamic geometry software to model our situation. Figure 2 is a screenshot of a sketch I 
created in Geogebra. In the sketch, I have constructed the segment 𝑂𝐶, with C at (2, 6), 
which will serve as the hypotenuse and the base of our isosceles triangle. Thus, the 
perpendicular bisector will be the line through M(1, 3) with slope −,

/
, which has equation 

𝑦 = ,1
/
− 2

/
 and is indicated by the red dashed 

line.  We can then construct a point B on the 
perpendicular bisector and the segments OB 
and BC, to complete our triangle. We can then 
measure the angle ∠𝐶𝐵𝑂 and the slope of OB, 
which are 84.86° and 0.45, respectively, in the 
diagram. Point B can then be moved along the 
perpendicular bisector until ∠𝐶𝐵𝑂 = 90°, at 
which point we can see that the slope is ,

-
, as we 

suspected earlier. 
 
We can use another geometric property to our 
advantage. If we draw a triangle so that its three 
vertices are on a circle, then if one of the sides is 
a diameter of the circle, the opposite angle 
measures 90°. This property is usually stated as 
“the angle inscribed in a semicircle is a right angle.” When I was in school, we studied more 
geometry than is currently taught. You can see the proof of the theorem and a few more 
circle properties in a recent article of mine (Godin, 2019). Figure 3 shows that if we construct 
the circle with OC as a diameter, then the point of intersection of the circle with the 
perpendicular bisector of OC is our point 𝐵(4,2), from which we can again verify that our 
slope is correct. 
 

Figure 1: Drawing a solution 

Figure 2: Drawing a solution with Geogebra 
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Using the properties of circles allows us to 
determine the point algebraically as well. We 
already know the equation of the 
perpendicular bisector. The circle has centre 
𝑀(1, 3) and radius OM with length √10. 
Hence, the equation of the circle will be 
(𝑥 − 1)- + (𝑦 − 3)- = 10. Substituting in the 
equation of the perpendicular bisector yields 

 

(𝑥 − 1)- + A−
1
3
𝑥 +

1
3
B
-

= 10, 
 
which we can solve by expanding, gathering 
like terms, and so on. However, observing 
that  −,

/
𝑥 + ,

/
= − ,

/
(𝑥 − 1), we can simplify 

the equation as follows:  
 

(𝑥 − 1)- +
1
9
(𝑥 − 1)- = 10 

10
9
(𝑥 − 1)- = 10, 

 
which leads to 𝑥 − 1 = ±3, yielding two solutions: 𝑥 = 4 (leading to the solution we have 
been exploring) and 𝑥 = −2, which is not in the first quadrant, as the problem stipulates.  
 
Looking back at Figure 3, we can indeed see that there is a point that would create another 
right isosceles triangle, albeit in the wrong quadrant. This point, 𝐵′(−2, 4), is the vertex of 
the square 𝑂𝐵𝐶𝐵′ inscribed in the circle with diameter OC. As such, 𝑂𝐵′ has slope −2 as it 
is perpendicular to OB. On the other hand, 𝐵′𝐶 is parallel to OB and also has slope ,

-
.  

 
We can also solve the problem using some trigonometry and trigonometric identities. If we 
let 𝜃 be the angle between OB and the positive x-axis, then the slope of OB is tan 𝜃. Since 
the triangle is right isosceles, ∠𝐵𝑂𝐶 = 45° . So, since the slope of OC is 3 and the angle OC 
makes with the positive x-axis is 𝜃 + 45°, we must have tan(𝜃 + 45°) = 3. Using the identity 
for the tangent of a sum, we get 
 

tan 𝜃 + tan 45°
1 − tan𝜃 tan 45°

= 3.	
 
Since tan 45° = 1, this simplifies to 
 

tan 𝜃 + 1
1 − tan 𝜃

= 3, 
 
from which we can extract that tan 𝜃 = ,

-
, our desired slope. 

 

Figure 3: Using properties of circles 
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I will sketch one more possible solution. This was the first of 
three solutions presented by the CEMC (the other two are 
similar to two of my solutions). Let B have coordinates (𝑝, 𝑞) 
and inscribe triangle OBC in a rectangle whose sides are parallel 
to the coordinate axes. Then the two shaded triangles in Figure 
4 have a specific relationship that allows us to determine the 
coordinates of C in terms of p and q. Since the slope of OC is 
known, we can calculate a relationship between p and q which 
allows us to determine the slope. I will leave the details to you; 
you can check out the solution at the CEMC website1. 
 
 
Another satisfying problem that admits solutions of many 
different types and levels of sophistication. This allows many 
students to have the ability to attack the problem. On the other 
hand, students with a broader mathematical background can 
possibly generate multiple solutions and reflect on their merits. 
 
And now, it’s time for your homework: 
 

Each of the variables P, Q, R, S, and T is a digit in the two six-digit numbers 
appearing in the product below. Determine the values of these variables. 
 

 P Q R S T 4 
×      4 
 4 P Q R S T 

 
Until next time, happy problem solving! 

 
 
References 
 
Godin, S. (2019). Problem solving vignettes: Going in circles. Crux Mathematicorum, 45(8), 

452-456. Available at https://cms.math.ca/crux/v45/n8 
 

 
 

Shawn Godin teaches at Cairine Wilson Secondary School in Orleans, Ontario. 
He strongly believes in the central role of problem solving in the mathematics 
classroom. He continues to be involved in mathematical activities: leading 
workshops, writing articles, working on local projects and helping create 
mathematics contests. 
 
 
 

 
 

                                                
1 https://www.cemc.uwaterloo.ca/resources/potw.php 

Figure 4: One last solution 
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Looking for and Using Structural Reasoning 1 
Casey Hawthorne & Bridget K. Druken 

 
oth the Common Core State Standards (CCSSI 2010) and the NCTM Process and 
Content Standards distinguish between Standards for Mathematical Practice (SMP) 
and standards for mathematical content. We believe this distinction is important and 

note that students often acquire knowledge of mathematical content without necessarily 
developing the related mathematical practices. In fact, we would argue that students 
grappling with mathematical content without mathematical practices are developing a 
different understanding. For example, consider the following task: 
 

Find a value for x that satisfies x/(x + 3) = 1.  
 
Jake multiplies both sides by x + 3 to get x = x + 3, and then eliminates the x on each side. 
He then writes, “no solution,” applying the rule he has been taught that such nonsense 
statements should be answered in this way.  
 
Madi reasons that because x + 3 is always 3 more than x, this means that the ratio of x + 3 
to x can never equal 1. Although both approaches arrive at a correct solution, Madi’s 
approach invokes the mathematical practice to “look for and make use of structure” 
(CCSSM 2010, SMP 7, p. 8). But what does it mean to “look for and make use of structure,” 
and how can we as teachers support students in developing this practice? 
 
Before unpacking these questions, we offer a problem to illustrate structural reasoning. We 
invite you to find two ways to reason about the values of x that make the following 
inequality true: |x – 3| > –4.  
 
This problem can be approached using algebraic techniques that leverage rules associated 
with symbolic notation. To do so, students might write two separate inequalities, x – 3 > –
4 and x – 3 < 4, solve each separately with the correct 
conjunction, x > –1 or x < 7, graph their solution sets, 
notice that their union covers the entire number 
line, and conclude that the solution is all real 
numbers. Although this approach reflects one 
kind of mathematical understanding that we 
aspire to instill in students, this problem could 
also be approached by examining the structure of the 
inequality. Some students might observe that this 
absolute value will be positive for all values of x and 
thus will always be greater than –4. Yet other students 
might leverage the interpretation of absolute value as 
representing distance or magnitude, noting that 
because distance is never negative, then all numbers are 
a distance greater than –4 from 3. Although all these 
understandings are critically important for students, 

                                                
1 Reprinted with permission from “Looking for and Using Structural Reasoning,” Mathematics 
Teacher, 112(4), copyright 2019 by the National Council of the Teachers of Mathematics (NCTM). All 
rights reserved. 
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too often we focus on the former. These latter approaches are not only efficient but also 
exciting to recognize.  
 
Structural reasoning involves first taking a step back and looking for properties that are 
embedded in mathematical representations before selecting a procedure to use to solve a 
problem. Inviting students to search for and examine relationships and properties can 
foster not only a greater understanding of mathematics but also a sense of self-efficacy 
surrounding mathematical problem solving.  
Structure and Representations 
In general, structure denotes characteristics of how objects are built. In mathematical terms, 
structure refers to the embodiment of properties and their relationships in mathematical 
objects. To build and access mathematics, we use representations of mathematical ideas, 
such as symbolic, graphical, verbal, contextual, and tabular representations. Depending on 

the representation used, the resulting 
structure takes on different forms. For 
instance, the symmetry of a quadratic 
equation can be seen more easily when 
graphed than in the symbolic equation y = 
ax2 + bx + c. Because different 
representations offer different insights into 
properties (Cuoco 2001; Lesh et al. 1987), an 
object’s structure becomes clearer when we 
analyze a property across multiple 
representations.  
 
One example of how engaging with a 
mathematical property across multiple 
representations may highlight structure can 
be seen when finding the x-value of the 
vertex of a quadratic y = ax2 + bx + c. 
Analyzing the problem graphically, we can 
see a symmetric parabola (see Figure 1). In 
words, we recognize this property by saying 
that the vertex lies on the axis of symmetry. 
Focusing on specific points, the axis of 
symmetry occurs halfway between the two 

x-intercepts. Having noticed this property graphically and described it verbally, we now 
look for its instantiation in symbolic form. 
 
Using a lens of structure, the quadratic formula can be transformed from a rule for 
calculating zeros of a function to reasoning about an embodiment of symmetry. This 
property is highlighted by analyzing the quadratic through multiple representations. To 
first capture the symmetry of the parabola, we split up the quadratic formula into two 
fractional expressions: 
 

𝑥 = −
𝑏
2𝑎

±
√𝑏- − 4𝑎𝑐

2𝑎
	 

 
Connecting the various parts of the expression to their graphical representations, 

 

Figure 1: This representation connects a quadratic 
graph to the quadratic formula. 
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√𝑏- − 4𝑎𝑐
2𝑎

 
 
is the distance between the axis of symmetry and each of the two roots. This means that x 
= –b/(2a) must be the center, consequently the x-value of the vertex. In summary, we can 
highlight structure resulting from the embodiment of symmetry within the symbolic form 
by describing and analyzing symmetry of parabolas through a graphical representation. 
 
Structure and Goals 
In addition to acknowledging the role that representation plays in structure, it is important 
to recognize that any structure that one sees in a mathematical representation will also 
depend on the mathematical goal. For instance, a student who does not consider the goal 
of a task may just see the symbolic representation of the expression 4x2 – 9 as a collection of 
disconnected symbols: 4, x, 2, and 9. It is not until the representation intersects with the 
goals that a student may begin to see structure in the notation.  
 
• Goal: to factor the expression 4x2 – 9.  

 

We can view 4x2 – 9 as the difference of two squares. This may be conveyed more clearly as 
(2x)2 – 32, which can be factored as (2x + 3)(2x – 3).  
• Goal: to solve an equation using the quadratic formula.  
We could overlay the general symbolic form of ax2 + bx + c = 0 onto the given algebraic 
expression. Students might see that the absence of a middle term bx means a coefficient of 
zero and the operation of subtracting 9 as a constant term of –9. Such a view might be 
highlighted by rewriting 4x2 – 9 as 4x2 + 0x + –9. We could then evaluate the quadratic 
formula where a = 4, b = 0, and c = –9, resulting in 
 

𝑥 =
−0 ± P0- − 4(4)(−9)

2(4)
 

 
• Goal: to solve a quadratic by applying inverse operations.  

 

Focusing on the three operations involved in the expression (squaring, multiplying by 4 
and subtracting 9) a new structure emerges, one that can be emphasized by rewriting the 
expression as 4(x)2– 9. With these operations identified as separate chunks, we can set this 
expression equal to zero and apply inverse operations in reverse order. This results in 
4(x2) = 9, x2 = 9/4, and finally 

𝑥 = ±Q
9
4

 

 
• Goal: to graph the quadratic.   

We can see the symbolic representation y = x2 as a base graph, with a vertical stretch of 4 
and horizontal shift of 9 units down. Such transformations of the original y = x2 might be 
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symbolized as y = 4(x2) – 9 and graphed as in 
Figure 2. With each of these four goals, the 
expression’s structure was not an inherent 
feature of the symbolic notation. Instead, we 
were able to perceive the structure only when 
we recognized mathematical properties 
associated with the goals in the representation. 
It is through this connecting process that 
structure emerges—it exists for a student only 
when the student sees it. This stands in contrast 
to structure being an intrinsic attribute that 
exists in mathematical representations.  
 
To summarize, we might help students by 
thinking of structure as existing when we 
connect mathematical understanding to the 
mathematical representations, with a particular 
goal in mind. We now provide three ways that 
have helped our students look for and make 
use of structural reasoning. 
 
Helping Students Develop a Structural Lens 
Along with the role that representations and goals play as we look for and make use of 
structure, we find it useful to think of structure as a lens through which mathematics can 
be viewed. One must develop a structural lens just as one develops any productive habit 
and learn when and how to use it to be effective. This lens is similar to what has been 
referred to as structural thinking (Mason, Stephens, and Watson 2009), structural sense (Hoch 
2003), or structural reasoning (Bishop et al. 2016). These terms suggest a disposition where 
one looks for, uses, and connects underlying mathematical properties in representations. In 
contrast to the way we learn a technique or a procedure (Mason et al. 
2009), we must develop structural sense over time. This is an understanding that teachers 
must think about developing during the course of the entire year by repeatedly drawing 
attention to this practice. We build on the work of Hoch and Dreyfus (2005) by providing 
three components involved in structural reasoning (see Figure 3). We also provide 
examples to illustrate each of their meanings. 
 
1. Recognizing equivalent or similar mathematical properties in different forms and representations 
The first component of structural reasoning is the ability to recognize equivalent or similar 
mathematical properties in different forms and across multiple representations. Rather than rely 
on contextual characteristics, this skill involves connecting similar ideas that may be 
represented in multiple ways. For example, we teach the slope-intercept and point-slope as 
two distinctive forms for linear equations. Our teaching experiences suggest that students 
often do not see these forms as connected. By taking a structural lens, one can see both 
forms as instantiations of two properties that describe a line: a fixed point (e.g., an intercept 
in one form and a general point in the other) and a direction (e.g., the slope).  
 
Seeing both the slope-intercept and point-slope forms as representations involving a fixed 
point and a direction can be highlighted through graphing. Although notationally y = mx + 
b and y = m(x – x1) + y1 look very different, their equivalent structure becomes more 
apparent by connecting these forms to their graphical representation and asking the  

Figure 2: This graphical representation shows 
transformations associated with y = x2. 
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Figure 3: Three components of structural reasoning involve recognizing, decomposing and making sense of 
properties, expressions and manipulations. 
 
question, “For what value of x can we evaluate each expression so that a point on the line 
can easily be identified?” For a linear function in slope-intercept form y = mx + b, one answer 
is x = 0, producing y = b. This means that the line passes through the y-intercept (0, b). In 
the point-slope form y = m(x – x1) + y1, the choice of x = x1 makes the first part of the 
expression equal to zero, leaving y = y1. This means that the line passes through (x1, y1). By 
finding the x-value that readily yields a y-value, we can identify the coordinates of a point 
in each form. Consequently, students can understand a graphed line knowing a point and 
slope, whether that equation is written in slope-intercept form or point-slope form.  
 
Additionally, the Common Core further emphasized the relationship between these two 
forms through the elevation of transformations. With this lens, the slope-intercept form y = 
mx + b can be interpreted as a vertical shift of the line y = mx, and the point-slope equation 
y = m(x – x1) + y1 can be interpreted as a horizontal shift of x1 and a vertical shift of y1, 
meaning that y = mx now passes through (x1, y1). 
 
2. (a) Seeing expressions as objects as well as processes 
The second two components of structural reasoning are interrelated, one being an 
understanding and the other an associated skill. The first is an understanding that enables 
students to see a mathematical expression (or pieces of a mathematical expression) as a single object 
that can be operated on. This interpretation contrasts seeing an expression as individual 
symbols combined by operations. Algebraic expressions can simultaneously represent the 
process of a computation and the object of that process (Sfard 1995). For example, the 
expression x + 3 can be interpreted as the process of adding three to an unknown quantity. 
It can also be interpreted as an object in and of itself, which is the result of three more than 
the quantity x. This difference can be emphasized contextually. For example, if the cost of 
a dinner is x dollars, and the tip is $3, from a process perspective, x + 3 is the process of 
adding three dollars to the cost of the dinner. From the object perspective, x + 3 would 
represent the total cost of dinner.  
 
With numerical operations, the distinction between process and object is easier to see 
because we typically use a different symbol for the object that results from the process (i.e., 
the process 12 + 3 can be represented by the single object 15). With algebraic expressions, 
no alternative exists to highlight the resulting object, as the result of x + 3 is x + 3. It may be 
challenging for students to see expressions both as individual symbols combined by 
operations and as a single object (the result of these operations). Consequently, students 
often struggle with the property of closure, not seeing x + 3 as a viable answer (Tabach and 

1. Recognizing equivalent or similar mathematical properties in different forms 
and multiple representations.  

2. (a) Seeing a mathematical expression (or parts of a mathematical expression) as 
an object as well as a process. 
(b) Decomposing (or chunking) algebraic expressions into a variety of sub-
structures based on the context and goals at hand. 

3. Making sense of appropriate manipulatives that productively uses the structure 
instead of automatically applying a set procedure. 
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Friedlander 2008). Not accustomed to seeing arithmetic expressions as objects, students 
may feel compelled to simplify algebraic expressions incorrectly, adding unlike terms, such 
as writing 3x in place of x + 3. 
 
(b) Chunking algebraic expressions into substructures 
Once students are able to interpret an algebraic expression as an object, they have access to 
a different way of thinking. Students are able to decompose algebraic expressions into a variety 
of substructures according to the context and goals at hand. Take the equation 2(x – 4) = 10. 
Students who see the left side of the equation as a set of operations are able to solve this 
equation by undoing the processes being applied to x in the reverse order (divide by 2 and 
add 4). In contrast, for those who are able to take a step back and see 𝑥 – 4 as an object, the 
question then becomes what number, multiplied by 2, gives 10? This leads to an 
understanding that the object x – 4 must be equivalent to 5, and x is 9. Such an approach of 
viewing the expression as embedded chunks has been referred to as the “cover-up” method 
(Herscovics and Kieran 1980).  
 
Cuoco, Goldenberg, and Mark (2010) refer to this component of structural reasoning as 
chunking. Chunking is often associated with factoring, but such an ability supports 
students in a wide variety of mathematical contexts. The understanding associated with 
chunking is critical when solving quadratics where factoring is necessary or with more 
challenging rational expressions (e.g., 11 – 50/(x – 2) = 6). We can also use chunking when 
finding the domain and range of the function 
 

𝑓(𝑥) = 8Q1 −
25
𝑥-
	. 

 
We can interpret f(x) as a series of function decompositions. This requires reflecting on the 
structure and identifying various symbolic pieces as separate, individual chunks. First, 
looking for the domain, imagine the radicand g(x) = 1 – 25/x2 as a function. For the square 
root of g(x) to be real, the output of g(x) must be nonnegative. Likewise, by interpreting and 
analyzing 25/x2 as a new chunk or expression that is subtracted from 1, we can see this 
chunk must be less than or equal to 1 for the radicand to be nonnegative. Further 
decomposing 25/x2, we realize that the denominator x2 must be larger than or equal to the 
numerator 25 for the fraction 25/x2 to be less than or equal to 1 and the output of g(x) to be 
nonnegative. Therefore, x must be greater than or equal to 5 or less than or equal to –5. 
Similarly, with the range, we leverage the fact that x2 must always be positive to reason that 
25/x2 will also be positive. We can conclude that 1 – 25/x2 will be strictly less than 1. 
Therefore, the range will be less than 8√1, which is equal to 8. The smallest value will be 0 
because the radical must be nonnegative, which occurs when 25/x2 is equal to 1.  
 
Although chunking may be a specific case or even the result of an object understanding of 
notation, we see these two components of structural reasoning as mutually supportive. As 
students develop the ability to take a step back and see algebraic expressions as objects, 
they are able to see decompositions of expressions as multiple pieces according to the goals 
and context. Likewise, encouraging students to identify different chunks within algebraic 
expressions leads to an understanding of algebraic expressions as an object. Although 
details of this relationship are beyond the scope of this article, we encourage others to 
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explore what activities might support students to develop connections between chunking 
and process/object reasoning. 
 
3. Using the lens of structure to make sense of appropriate manipulation 
Finally, as students begin to possess the skills to decompose representations and chunk 
expressions into objects, they may engage in the last component of structural reasoning. 
This component requires students to pause to examine the structure and decide whether one 
manipulation may simplify a problem more than another. This contrasts with automatically 
applying a set procedure to solve a problem. Making sense of the next steps that take 
advantage of structure is difficult to develop, as demonstrated by Hoch and Dreyfus (2004). 
When college-bound juniors were asked to solve 1/4 – x/(x – 1) – x = 6 + 1/4 – x/(x – 1), 
close to 90 percent of them multiplied both sides of the equation by a common denominator 
to convert it into a linear equation, rather than observing that the expression 1/4 – x/(x – 1) 
occurs on both sides of the equation. Noting this similarity in structure can help students 
see the original equation as equivalent to –x = 6. Although all students in the study were 
exposed to the “substitution method” in solving quadratics (i.e., substituting u for (x – 4) in 
the expression 2(x – 4)2 – 5(x – 4) + 3), very few applied this technique. This may be because 
students viewed such a method as just that, a specific technique, not an overall orientation 
that permeates their thinking. 
 
In the Eye of the Beholder 
Whether an elementary school student is asked to complete the equation 123 + 98 = 122 + 
___; a middle school student, to solve for x in the inequality |x – 3| > –4; or a high school 
student, to use the quadratic formula to interpret the relationship of the roots to the vertex, 
structural reasoning is an important process and practice that shapes students’ 
understanding of mathematics. With fear of stating the obvious, we note that we can only 
see what we look for. By taking a step back and looking for properties embedded in 
multiple mathematical representations, students can develop abilities to see expressions as 
both processes and objects, to chunk expressions into substructures, and to evaluate their 
next steps before automatically applying procedures. We find that thinking about structural 
reasoning as a lens for interpreting mathematics to be powerful for supporting students in 
learning mathematics.  
 
The three qualities described here involved in looking for and making use of structural 
reasoning (see Figure 3) can be developed by teachers and used by students while problem 
solving. Although such an approach to mathematics is undoubtedly challenging to 
develop, focusing on structural thinking provides a powerful new way to reason 
mathematically. Because structure is in the eye of the beholder, teachers can play an 
important role in developing structural reasoning in students. As students practice looking 
for and using structural thinking across mathematical representations, they will begin to 
draw connections between previously compartmentalized topics. In this process of 
connecting mathematics, students will find greater enjoyment in developing their 
mathematical practices. We encourage others to further consider ways to develop structural 
reasoning in students. 
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Student Efficacy Beliefs: What is the Impact of Group Work? 
Beth Baldwin 

 
eaching secondary mathematics has its challenges, to be sure. One of the greatest 
challenges that I often face is student attitude towards mathematics. Throughout my 
years as a secondary mathematics teacher, I have become increasingly aware of 

students’ attitudes towards mathematics, which seem to strongly impact their learning and 
work in my classroom. In particular, I have often observed that the more confident and 
growth-focused students are more engaged in their learning than students who have 
negative feelings towards their work. This, in turn, made me wonder: What could I do as a 
teacher to positively impact student attitude about their mathematical abilities? 
  
I  am certainly not the first to observe the way in which student beliefs, particularly negative 
ones, can impact learning. I have had many conversations with other educators over my 
decade of teaching that have had a similar tone: “Why does (student) seem so negative 
about their performance, despite having done so well?” This phenomenon has perplexed 
and frustrated teachers across other disciplines, but seems to be more concentrated in 
mathematics. Many students appear to enter the 
mathematics classroom already having formed strongly 
held beliefs about their abilities. This seems particularly true 
in secondary schools, as students have already had ample 
experience in what they have come to know as mathematics 
through their elementary and middle school years.  
  
This curiosity, and at times frustration, about students’ 
beliefs led me to pursue a graduate degree in secondary 
mathematics education from Simon Fraser University. For 
my thesis work, I conducted research focusing on the 
relationship between self and group efficacy beliefs in 
secondary mathematics. Through this work, I have gained 
some insight into this relationship. This article aims to give an overview on efficacy beliefs, 
as well as to present my own findings and their possible classroom implications.  
  
What is Efficacy? 
All past experience with mathematics informs students’ beliefs about their mathematical 
ability. This is more formally known as self-efficacy—a student’s beliefs about his or her 
ability to perform a certain task. Self-efficacy was first introduced in psychology literature 
by Albert Bandura (1977) in a more general context, but has since been studied in 
connection with many areas. According to Bandura, there are four means of changing self-
efficacy: personal mastery experience, vicarious experience, social feedback, and mood. 
Among these, personal experience (either positive or negative) is the most impactful 
(Bandura, 1977). This helps to explain why students in secondary mathematics have a more 
strongly held sense of belief than elementary students—they simply have more experience 
from which to draw conclusions. In short, Bandura’s work shows that the more positive 
experiences a person has in a certain realm, the more likely they are to think positively 
about their abilities in this realm in the future. 
 
The connection between self-efficacy and mathematics ability has been researched by 
many—so much so that a Mathematical Self-Efficacy Scale (MSES) was developed by 
Hackett and Betz (1989). This metric has individuals place themselves on a scale for 
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different belief statements about their abilities in mathematics. The scale aims to measure 
an individual’s efficacy beliefs, but does not indicate whether or not these beliefs accurately 
reflect the individual’s ability. On the other hand, calibration is the notion of aligning self-
efficacy beliefs with ability. 
 
The calibration of self-efficacy has been studied most effectively when content is specified—
for instance, particular mathematics topics, or even specific questions. If you ask a student 
if they are ‘good at mathematics,’ that is different than asking a student if they are ‘good at 
algebra.’ Even more specifically, we can ask a student if they are good at ‘solving the 
equation x + 5 = 2’. As the task being assigned to students gets more and more specific, 
students can narrow in on particular past experiences to inform their self-efficacy beliefs. 
Pajares and Miller (1997) showed just this—that specific content showed more calibrated 
self-efficacy beliefs. Additionally, context plays a significant role in efficacy beliefs. 
Whether a student is asked how they will do in a group setting, on homework, or on a test 
has also been shown to impact efficacy beliefs (Pajares & Miller, 1997). 
 
As more and more mathematics educators shift towards group activities in the classroom, 
I became interested in students’ self-efficacy beliefs while engaging in group work. How 
do students feel when working in groups, as compared to working alone? Do their efficacy 
beliefs change? However, before I discuss my research in this area and the results, I would 
like to provide a brief overview of the group work model at the center of my work.  
 
The Thinking Classroom Model 
You may already be familiar with Peter Liljedahl’s thinking classroom (2016) model, as it has 
been growing in popularity among mathematics educators over the past several years. I 
was introduced to this approach by way of my graduate studies program. In January of 
2016 I took a course with Dr. Liljedahl at Simon Fraser University and was immediately 
captivated by his approach to the teaching and learning of mathematics. There are two 
strategies that Liljedahl argues should be implemented first, as they have been proven to 
be among the most effective at engaging learners: 
 

1) Have students complete (some of) their daily work on a vertical non-permanent 
surface (VNPS).  

 
2) Have students work in visibly random groups (VRG). 

 
In my own classroom, these strategies were implemented as follows. Every class began with 
me shuffling a deck of cards and students selecting a card from the deck. It was important 
that students were able to see me shuffle the deck so that they were aware of the 
randomization. By visibly randomizing groups, Liljedahl has shown that students know 
there is no hidden agenda to their grouping and over time, students become more agreeable 
to work in any group. Their selected card would be their group assignment for that class 
(all “1”s formed a group, all “2”s formed a group, etc.). After card selection, I would provide 
an oral description of a problem or task for students to work on with their group. Rarely 
were there visuals or written descriptions of any kind, but if these were necessary, I would 
make a photocopy for each group to have as they worked. Liljedahl argues that oral 
instructions encourage prompt group discussion and collaboration. Once the problem or 
task was assigned, students would go to their stations, which were marked by numbers 
around the classroom corresponding to the cards they drew. They would then begin 
working on the task or problem on whiteboards situated around the perimeter of the 
classroom, with only one marker provided per group to promote discussion. This work 
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would continue for anywhere from ten minutes to over an hour, depending on the students’ 
age, engagement, and the depth of the task.  
 
Group problem-solving tasks have been shown to increase student engagement and 
collaboration (Liljedahl, 2016). In particular, Liljedahl argues that VRGs and VNPS are 
among the most effective ways to engage learners in mathematics classrooms. It has been 
interesting to observe attitude shifts in my own students when they are working together—
students seem more positive in their approach to mathematics. My observations have led 
me to believe that, in general, students will feel more confident in their mathematical 
abilities in groups than individually. 
 
Study 
My study followed 104 students in grades 11 and 12 for three months during the spring of 
2017. All of the students were taking part in a thinking classroom. The students were 
initially given a questionnaire that consisted of four parts: Parts 1 and 2 looked at general 
mathematics efficacy beliefs in the context of individual and group work, respectively. This 
part asked students to agree or disagree on a five-point scale on statements such as “I am 
good at mathematics” and “I believe I can understand the content in a mathematics course.” 
Parts 3 and 4 looked at more specific mathematics content beliefs in the context of 
individual and group work, respectively. These parts asked students to state how well they 
thought they would perform on a five point scale, from very poorly to very well, on topics 
such as “solving an equation algebraically,” “working without a calculator,” and “word 
problems”. This questionnaire was administered twice over the course of six weeks. For 
those interested, the questionnaire is available in full at the Simon Fraser University library 
in the appendix of my thesis (Baldwin, 2018). 
 
After analyzing the questionnaire, I decided to interview some of the students who showed 
higher variation in their self and group efficacy scores. The purpose of the interviews was 
to gain further insight as to the rationales behind the students’ efficacy beliefs. After 
interviewing the students, not only was I able to discern why they believed what they did, 
I also noticed that there were three distinct groups within those interviewed.  
 
Findings 
As I had expected, the questionnaire showed that the majority of students (approximately 
70%) reported more positive group-efficacy than self-efficacy. This makes sense: the notion 
that “more brains are better than one” is an old adage for a reason. The interviewees in this 
first group echoed this notion and stated that they felt they would benefit from others’ 
ideas. These students reported that they would turn to group members in situations where 
they felt stuck or uncertain about a problem or task. Although I did not interview all 
students surveyed, it is my hunch that this is what the majority of students, or more 
generally people, would say. These students gave particular examples of times when they 
were stuck and another student had offered a suggestion that moved the group forward. It 
was clear that they felt they benefitted from others’ ideas and would be less successful 
without them.  
 
The second group was comprised of students that indicated more positive self-efficacy 
beliefs than group-efficacy beliefs. These students preferred, and thought they would 
perform better, working alone. The students provided several reasons, but most notably 
they all thought that a group would make them less efficient, hindering their progress. 
Group work is sometimes time-consuming and these students felt it could be inefficient. 
These students were those with strong mathematical abilities and tended to perform well 
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on assessments. Additionally, they frequently had keen mathematical insights and may not 
have benefitted from a group as much as other students. One of these students also 
commented on being confused working in groups as she sometimes had to explain her 
thinking and was not always able to clearly do so. 
 
There was a third group of students that I did not anticipate. This group also had more 
positive group efficacy beliefs, but the reasoning they provided differed slightly from the 
first group. This subgroup felt that they would feel more confident in a group because they 
were generally not confident in their own ideas. That is, these students may have been 
perfectly capable of completing a task individually, but they had significant doubt in their 
work. Their reasoning was that the addition of a group could serve as a means of checking 
their thinking and reaffirm any ideas they may have. These students all reported feeling 
anxious about mathematics. Interestingly, they were all female. 
 
It should be stated that this research was conducted in a relatively affluent area in West 
Vancouver and all students surveyed were enrolled in more academic courses: Pre-
Calculus and International Baccalaureate (IB). Students enrolled in a less academic or 
abstract mathematics course—for example, Foundations of Mathematics or Apprenticeship 
& Workplace – would likely have different feelings towards their efficacy. It would be 
interesting to extend this research to a larger variety of students. 
 
Practical Takeaways 
After observing some of the short-term impacts of group work on mathematics efficacy 
beliefs, I wonder what the long-term impact might be. I have a hunch that more experience 
with group work (from none) would have positive impacts on both group- and self-efficacy 
beliefs. This is because the more positive group efficacy beliefs would be a means of 
changing self-efficacy beliefs, as outlined by Bandura (1977). In particular, students would 
be privy to three of four means of changing self-efficacy: mastery experience (in the group), 
vicarious experience of their classmates, and positive feedback from their group. Even if it 

was another student who had specific insights or 
‘success’ on a problem, this vicarious experience may 
lead students to feel as though they too were a part of this 
success, regardless of how much they were directly 
involved. Having experienced success in mathematics in 
the context of a group, I have a hunch that these 
experiences could positively impact self-efficacy beliefs, 
and possibly attitudes towards mathematics. 
 
I have anecdotal experience that this is the case. Just this 
past fall, I recall working with several students in my 
Math 9 classroom who I had observed to have low 
mathematical self-efficacy. These students had not been 

involved in my formal research, but they often remarked that they were “bad at math” and 
that they thought they would not do well in our course. After working in a thinking 
classroom model for only a few short months, I noticed fewer of these statements and that 
these same students seemed more positive towards their work. Of course, I cannot make a 
claim that this is directly because of their experiences with group work; however, it is 
definitely a possibility, as hypothesized above. Research that follows efficacy beliefs from 
the start of the school year in a thinking classroom could look for changes in self-efficacy 
beliefs. 
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Nevertheless, the impact of the thinking classroom model on efficacy beliefs cannot be 
ignored. Student confidence, which is a more generalized and context-less form of self-
efficacy did seem to improve. There is a shift towards a warmer and more positive 
classroom environment during group work in which collaboration and communication are 
paramount—in my own classroom, this came by way of the thinking classroom model. This 
positivity could only serve to improve efficacy beliefs. My hope is that improved group-
efficacy beliefs would give students more resilience when working individually and lead 
to more positive self-efficacy beliefs.  
 
Here in British Columbia, there has recently been a shift towards more emphasis on group 
work in the mathematics classroom, which naturally takes away from individual work 
time. We have a new mathematics curriculum from Kindergarten through Grade 12 that 
outlines more focus on skills as opposed to content standards. All secondary mathematics 
courses now have a set of ‘curricular competencies’ that outline a more general set of 
underlying skills that students should be developing throughout the course. Among these 
competencies are two that can be facilitated particularly effectively in the context of group 
work: ‘communicating and representing’ and ‘connecting and reflecting’ (more details 
available at https://curriculum.gov.bc.ca/curriculum/mathematics). The documents also 
mention the importance of classroom discourse, as well as the 
ability to make connections between mathematical concepts. If 
it is generally true that students report more positive group than 
self-efficacy beliefs, then this emphasis on group work may be a 
more positive way of learning and experiencing mathematics for 
the majority of students within the framework of the 
curriculum. 
 
Despite the benefits of group work, we cannot underestimate 
the value of individual work and practice time. I feel that after 
initially having positive experiences by means of group 
activities and problem solving, students can gradually move 
towards more individual work, should we so choose. This would theoretically give most 
students the opportunity to experience positive efficacy and would likely lead to positive 
associations with mathematics in general. After positive experiences with group work, my 
hope is that this positivity would impact their self-efficacy beliefs for the better as well.  
 
However, if we are seeking to improve student self-efficacy beliefs and attitude in 
mathematics, we also need to have students realize themselves that their beliefs may be 
impacting their learning. Simply by discussing what efficacy beliefs are and having 
students become more aware of their self-talk, we as teachers can help students move 
forward with new, positive experiences. Carol Dweck (2006) is well known for her research 
on the growth mindset—the belief that we are able to learn and grow, and if we are 
currently unable of accomplishing a certain task, it does not mean that we will never be 
able to. By educating ourselves and our students about what efficacy is, and providing 
opportunities to develop more positive beliefs around them, we are helping to create 
positive learning environments that foster empowered students. 
 
 

References 
 
Baldwin, B. (2018). The relationship in between mathematics students’ self and group efficacies in 

a thinking classroom (Master’s Thesis). Simon Fraser University, Burnaby, BC. 

After initially 
having positive 
experiences in a 
group, students 
can gradually 
move towards 
more individual 
work, should we 
so choose. 



 

 

29   The Variable, Volume 5, Issue 1 

 
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. 

Psychological Review, 84(2), 191-215. 
 
Dweck, C. (2006). Mindset: The new psychology of success. New York, NY: Ballantine Books. 
 
Hackett, G., & Betz, N. (1989). An exploration of the mathematics self-efficacy/mathematics 

performance correspondence. Journal for Research in Mathematics Education, 20(3), 261-
273.  

 
Liljedahl, P. (2016). Building thinking classrooms: Conditions for problem solving. In P. 

Felmer, J. Kilpatrick , & E. Pekhonen (Eds.), Posing and solving mathematical problems: 
Advances and new perspectives (pp. 361-386). New York, NY: Springer.  

 
Pajares, F., & Miller, D. (1997). Mathematics self-efficacy and mathematical problem 

solving: Implications of using different forms of assessment. The Journal of Experimental 
Education, 65(3), 21-228. 

 

 
 
Beth Baldwin has been teaching secondary mathematics in British Columbia since 
2008. She recently completed her Master’s thesis from Simon Fraser University, 
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Encouraging Mathematical Habits of Mind: Puzzles and Games 
for the Classroom 
Streamers & Kakurasu Puzzles 
Susan Milner  

 
athematical logic games are a marvellous way of developing students’ reasoning 
abilities. I visit hundreds of classrooms a year, sharing games with students of all 
ages, and am always struck by how much fun students have and how surprised 

their teachers are by the level of thinking the students demonstrate. 
 
I have discussed a number of these games, including some for primary students, in 
previous editions of The Variable.1 Here are two more that have proven to be very popular 
in intermediate through secondary classrooms.  
 
Streamers                              
Recommended for grades 6-12, but has also been very successful in grade 4/5 classes where 
students already have experience with math/logic games. Manipulatives are required. 
 
I introduce the game by creating a grid on the board 
using magnetic pieces (see Figure 1). Then, I ask the 
class: 
 
“What do you notice about this solved puzzle?” 
 
Cover up the answers below until you’ve had a 
chance to think! 
 
Students come up with a variety of observations, 
including the following: 
• There are four shapes. 
• Each shape comes in four colours. 
• Each colour appears once in every row and every 

column. 
• Each shape can be connected to other pieces of the 

same shape by a one-step horizontal, vertical, or 
diagonal line. 

 
We then solve the next puzzle together. I ask students to make only one suggestion, not a 
chain of them, so that everyone can follow each step in the logic. The single most important 
thing is to look for something we know must be true. No guessing, as that usually results 
in a mess. Knowing the difference between what must be the case and what might be only 
possible is, in fact, central to solving all logic puzzles – and very important in solving any 
type of mathematical problem. 
 
 
                                                
1 See issue 1(3) of The Variable for an introduction to Domino puzzles and Rectangles, 1(5) for 
Hidato and Latin Squares, 1(8) for SET®, and 2(2) for Difference Triangles. 

M 

    

    

    

    

Figure 1: A solved Streamers puzzle 
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Can you find a place where you know for sure a particular piece must go? 
 
These are the pieces that you have left to play with: 
 
 
 
 
 
 
As in all of these kinds of math/logic puzzles, there may be several good places to start, or 
several good subsequent moves at any stage. In the interests of saving space, I will present 
a logical sequence of moves, two or three pieces at a time. Each new piece is shown as 
striped. The coloured striped piece goes first. Then, think about what colour the black 
striped piece(s) should be. Readers will probably derive more enjoyment from covering up 
each step until they have made their own decision, rather than skimming over my solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

    

    

    

    

    

    

    

    

    

    

    

Figure 2: An easy Streamers puzzle 
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Figures 3-6: A solution sequence for the Streamers puzzle in Figure 2 
 

Once we have solved a puzzle as a class, every student gets a bag of coloured pieces and 
the first printed puzzle. Students move on to the next puzzle once an adult has checked 
their solution to the current one. The puzzles gradually get more challenging. As students 
get comfortable with the rules, they need less oversight. 
 
A slightly more challenging Streamers puzzle appears below, in order to demonstrate more 
complex reasoning. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
     
 
     
 
 
 
 
 
 
 
 

 
The shaded figures are the only places in the circle streamer and the squares streamer where 
it is possible to place a yellow piece.   
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There is only one place for the last yellow piece to go. From this point, the puzzle is easy to 
solve! 
 
If you are interested in introducing your class to Streamers, you will find printable puzzles 
and a template for the pieces at http://susansmathgamesca.ipage.com/streamers/.  
I made my pieces out of craft foam, but card stock would also work. 
 
Streamers is a modified version of Strimko, a numbers-only puzzle created by the 
Grabarchuk family in 2008. I have found that puzzles incorporating shapes and colours are 
more easily accessible for many people, so I created Streamers in the hope that some 
teachers and students might be drawn to Strimko after trying Streamers.  Books and apps 
featuring Strimko puzzles in different sizes can be easily sourced on-line.  
 
Kakurasu 
Recommended for grades 7-12, but has also been successful in grade 4-6 classes where 
students already have experience with math/logic games. This is a paper and pencil puzzle 
that does not require manipulatives. 
 
It’s a bit tricky at first, but is well worth the effort! 
 
What do you notice about this solved puzzle (Figure 7)? (A row and a column have been 
shaded in order to give you a hint.)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: A solved Kakurasu puzzle 
 
Here is another solved puzzle (Figure 8), so that you can look for commonalities. 

    

    

    

    

 1 2 3 4  

1 û ü ü û 5 

2 ü ü ü û 6 

3 û û ü ü 7 

4 ü ü û û 3 

 6 7 6 3  
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Figure 8: Another solved Kakurasu puzzle 
 
If you think you know what’s going on, fill in the blanks on the right and bottom of the 
following puzzle (Figure 9).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 
 
A row and a column have again been shaded, in order to give you something to focus on. 
The answer is below (Figure 10). 

       
           
 
 
 
 
 
 
 
 
 
 
 

Figure 10

 1 2 3 4  

1 ü ü ü ü 10 

2 û ü û û 2 

3 û û ü ü 7 

4 ü û ü  4 

 5 3 8 4  

 1 2 3 4  

1 û û û ü  

2 ü ü û û  

3 û ü ü û  

4 û ü ü ü  

      

 1 2 3 4  

1 û û û ü 4 

2 ü ü û û 3 

3 û ü ü  5 

4 û ü ü ü 9 

 2 9 7 5  
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By the time we’ve discussed at least one solved puzzle and filled in the right side and 
bottom of another, many students are able to deduce the rules.  
 
The rules of Kakurasu: 

o Our goal is to place the ü marks where they will produce the given totals on the 
right and the bottom of the grid.  

o The targets on the right give the totals for the rows. 
o The targets across the bottom give the totals for the columns. 
o The numbers across the top and on the left give the values that contribute to the 

totals. 
o Marking a square with a ü means that square’s value gets added to both the row’s 

total and the column’s total.  
o û represents a box that cannot be used.   

 
Guessing or relying on “intuition” might work on smaller puzzles, but it doesn’t work for 
bigger ones. It is a good idea to deliberately practice your logic on the easier puzzles before 
moving on to harder ones.  
 
 
In the classroom, we would solve the easy 4x4 puzzle in 
Figure 11 as a group, with students taking turns to make a 
single suggestion. It can take a bit of time for everyone to feel 
comfortable with the direction in which to read the numbers  
for the given targets. 
 
You might like to try it yourself before reading the discussion 
below! 
 
While there is only one correct solution to a puzzle, there are 
usually several ways to get to that solution. Here is one 
sequence of reasoning: 
 
Consider the targets of 10 and 2. There is only one way to get 
each of these (see Figures 12 and 13).  

 
 
 
   
 
 
 
 
 
 

 
 
 
 
                        Figures 12       Figure 13 
Now we can consider the rows.  

 1 2 3 4  

1     7 

2     5 

3     7 

4     4 

 4 2 10 4  

 1 2 3 4  

1   ü  7 

2   ü  5 

3   ü  7 

4   ü  4 

 4 2 10 4  

 1 2 3 4  

1  û ü  7 

2  ü ü  5 

3  û ü  7 

4  û ü  4 

 4 2 10 4  

Figure 11: An easy Kakurasu 
puzzle 
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We have reached the target of 5, so we finish the second row by placing the Xs (Figure 14). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14 
 
In the bottom row we already have 3, so we just need 1 to get 1 + 3 = 4. 
 
Now the puzzle can be completed using either the remaining rows or columns (Figure 15). 
Here, I have used the columns, so we know that we have solved the puzzle because the 
final row targets are also met. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Here is a slightly harder 4 x 4 puzzle, with some suggestions (Figure 16): 
     
   
   
   
 
 
 
 
 
 
 
 
 

 
The only way to reach a target of 2 is to use 2 itself.   

 1 2 3 4  

1  û ü  7 

2 û ü ü û 5 

3  û ü  7 

4 ü û ü û 4 

 4 2 10 4  

 1 2 3 4  

1 û û ü ü 7 

2 û ü ü û 5 

3 û û ü ü 7 

4 ü û ü û 4 

 4 2 10 4  

 1 2 3 4  

1     7 

2     5 

3     4 

4     8 

 5 2 7 8  
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The only way to reach 8 is to subtract 2 from 10. 
 
 
 
 
 
   
 
 
 
 
 
  
    

 
The rest of the puzzle follows quite easily. 
 
Some general strategies for solving Kakurasu puzzles:    
 
Small-ish numbers 
• Anywhere that there is a 1 or a 2 is a good place to start, as there is only one way to 

make either of those work.  This is true no matter how large the puzzle. 
 
• While there are two ways to reach 3, we know for sure that 

no number larger than 3 can be used. This is true no matter 
how large the puzzle. 

 
• What can we conclude about 4? There are only two ways to 

reach 4, either  4 = 4  or 4 = 1 + 3. There is no way to use 2, so 
we can get rid of that possibility. 

 
 
Large-ish numbers 
• Other good places to start a puzzle involve the appropriate triangular number. The nth 

triangular number is the sum of the first n counting numbers. For example, 10 is the 4th 
triangular number because we can form a triangle from 10 dots, with one more dot in 
each row than in the previous one. 

 
 
 
 
 
 
        

      The first five triangular numbers 
 
Therefore, in a 4x4 puzzle, 10 is a good place to start.  So are 9 and 8, as there is only one 
way to get each of them, 9=10-1 and 8=10-2. On the other hand, 7 does not have a unique 
decomposition, because 10-3 can be found by deleting the 3 or by deleting 1 and 2. 
 

 1 2 3 4  

1  û  ü 7 

2  ü  û 5 

3  û  ü 4 

4 ü û ü ü 8 

 5 2 7 8  

 1 2 3 4  
    û 3 

 1 2 3 4  
  û   4 
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• We can, however, conclude something about 7 in a 4x4 puzzle:  
 
  
 
 
 
Larger puzzles give us more to think about.  
• In a 5x5 puzzle, 10 is no longer a good place to start. The most useful large numbers 

here are 15, 14, and 13.  
• In a 6x6 puzzle, we need the 6th triangular number, which is 21.  
• Subtraction is often more useful (and quicker) than addition.  
• You might find it useful to note down how many you have left to reach in a column or 

row.  For example, suppose that in a 6x6 puzzle you have reached this point: 
 
 
 
 
 
      In order to remind yourself of the new target, you might want to write: 
 
 
    
 
 
Here are a few slightly harder puzzles for you to try. Some are missing a few target 
numbers, but solutions are still unique. 

 
 
 

   
 
 
 
 
 
 
 
 
 
 
 

 1 2 3 4  

    ü 7 

 1 2 3 4 5 6  

   ü ü   13 

  1 2 3 4 5 6  

               ü ü   13 (6) 

 1 2 3 4 5  

1      7 

2      9 

3      9 

4      7 

5      9 

 10 4 11 1 14  

 1 2 3 4  

1     ? 

2     5 

3     6 

4     ? 

 4 6 5 4  
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Two good sources for online Kakurasu puzzles are Brainbashers and Otto Janko’s website. 
 

 
 

Susan Milner taught post-secondary mathematics in British Columbia for 29 
years. For eleven of those years she organised the University of the Fraser 
Valley’s high school math contest – her favourite part was coming up with 
post-contest activities for the participants. In 2009 she started Math Mania 
evenings for local youngsters, parents, and teachers. Now retired and living 
in Nelson, BC, she shares her math/logic games with students all over BC, as 
a volunteer for Science World. She also gives professional development 
workshops. Lately she has been giving Brain Games classes for the Nelson 
Learning in Retirement program, which is a whole lot of fun. In 2014 she was 

awarded the Pacific Institute for the Mathematical Sciences (PIMS) Education Prize. 
 
 

Problems to Ponder 
 
Square Dissection 
A number N is called ‘nice’ if a square can be dissected into N nonoverlapping 
squares. For example, as the following figure shows, 6 is a ‘nice’ number:  
 

   

   

   

 
Which numbers are ‘nice’?  
 
Source: Mason, J., Burton, L, & Stacey, K. (1985). Thinking mathematically. Essex, 
England: Prentice Hall. 

 1 2 3 4 5  

1      ? 

2      3 

3      11 

4      ? 

5      8 

 14 5 13 9 3  

 1 2 3 4 5 6  

1       10 

2       7 

3       5 

4       8 

5       17 

6       9 
 16 12 12 5 12 9  
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Intersections 
 
In this column, you’ll find information about upcoming math education-related workshops, 
conferences, and other events. Some events fill up fast, so don’t delay signing up! For more 
information about a particular event or to register, follow the link provided below the description. If 
you know about an upcoming event that should be on our list, please contact us at 
thevariable@smts.ca.  
 

Within Saskatchewan 
 
Technology in Mathematics Foundations and Pre-Calculus 
March 6, 2020 
Weyburn, SK 
 
Technology is a tool that allows students to understand senior mathematics in a deeper 
way. This workshop is designed to have math foundations and pre-calculus teachers 
experience a variety of technology tools that allow students to represent and visualize 
mathematics concepts. Tools highlighted are useful for students to explore, learn, 
communicate, collaborate and practice, in order to enhance their understanding of 
mathematics in secondary mathematics. 
 
More information at https://www.stf.sk.ca/professional-resources/events-
calendar/technology-mathematics-foundations-and-pre-calculus  
 
Saskatchewan IT Summit 
May 4-5, 2020 
Saskatoon, SK 
 
The summit will create opportunities to:  
• Explore exemplary practices for teaching and learning with technology to support the 

actualization of Saskatchewan curricula.  
• Share best practices in network infrastructures and centralized technologies that 

support student learning through technology use in schools and school divisions.  
• Promote professional dialogue that fosters effective teaching and learning with 

technology.  
• Celebrate, support and encourage partnerships and networks of support. 
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More information at https://www.stf.sk.ca/professional-resources/events-
calendar/saskatchewan-it-summit  

Accreditation Initial Seminar  
March 5-6 & 26-27, 2020 
Saskatoon, SK 
Presented by the Saskatchewan Professional Development Unit 
Accreditation seminars are offered to enable qualified teachers to become accredited. 
Accreditation is the process by which qualified teachers are granted the responsibility of 
determining the final mark or standing of the students in a specified Grade 12 (level 30) 
subject or subjects. The Accreditation seminar provides an opportunity for teachers to 
challenge, extend, enhance and renew their professional experience with an emphasis on 
assessment and evaluation. Participation in this seminar results in partial fulfilment of the 
requirements for accreditation in accordance with the Ministry of Education’s publication 
Accreditation (Initial and Renewal): Policies and Procedures (2017). 
More information at www.stf.sk.ca/professional-resources/events-
calendar/accreditation-seminar-initial

Accreditation Renewal/Second Seminar  
March 5-6, 2020 
Saskatoon, SK 
Presented by the Saskatchewan Professional Development Unit 
More information at https://www.stf.sk.ca/professional-resources/events-
calendar/accreditation-renewalsecond-seminar 

Beyond Saskatchewan 
NCTM Centennial Meeting and Exposition 
April 1-4, 2020 
Chicago, IL 
Presented by the National Council for Mathematics Teachers 
NCTM turns 100 in 2020. Join thousands of math education professionals in Chicago as we 
celebrate at the Centennial Annual Meeting & Exposition. In addition to compelling 
sessions, networking opportunities, and valuable content, there will be special events and 
surprises to mark the occasion. Whether you’re a PK to Grade 12 classroom teacher, math 
coach, administrator, math teacher educator, preservice teacher, or math specialist, you will 
want to join us in Chicago as NCTM starts its second century. Something like this only 
happens every 100 years!  
More information at https://www.nctm.org/100.aspx 

OAME 2020 Annual Conference 
May 7-8, 2020 
Oshawa, ON 
Presented by the Ontario Association for Mathematics Education 

The Ontario Association for Mathematics Education (OAME) is an organization for 
professionals interested in mathematics education. Our mission is to promote excellence in 
mathematics education throughout the province of Ontario.  
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OAME hosts an annual conference where educators have the opportunity to hear from 
keynote and featured speakers, attend workshops and networking events, and explore the 
latest resources available from exhibitors. Over 1200 educators attended the 2019 
conference in Ottawa.  
 
The theme of OAME 2020 is “In Focus”, centering around balance, with an emphasis on:  
• Well-Being (math anxiety of teachers and/or students, mental health, community 

engagement, mindfulness)  
• Equity (Culturally Relevant Pedagogy, social justice, student voice, inclusion)  
• Balanced Mathematics (Teaching & Learning: implementation, communication, 

technology, differentiation)  
• Balanced Assessment (differentiation, diagnostic, summative, formative) 
• Leadership (mentoring, coaching, collaborating, administration) 

More information at https://sites.google.com/oame.on.ca/oame2020/home  
 

Online Workshops 
 
Education Week Math Webinars 
Once a month, Education Weekly has a webinar focusing on math. They also host their 
previous webinars on this site. Previous webinars include Formative Assessment, Dynamic 
vs. Static Assessment, Productive Struggling, and Differentiation.  
 
More information at www.edweek.org/ew/marketplace/webinars/webinars.html 
 
Global Math Department Webinar Conferences 
The Global Math Department is a group of math teachers that organizes weekly webinars 
and a weekly newsletter to let people know about the great stuff happening in the math-
Twitter-blogosphere and in other places. Webinar Conferences are presented every 
Tuesday evening at 9 pm Eastern. In addition to watching the weekly live stream, you can 
check the topic of next week’s conference and watch any recording from the archive.  
 
More information at www.bigmarker.com/communities/GlobalMathDept/conferences  
 

Problems to Ponder 
 
Court Intrigue 
A stranger asks you to shuffle an ordinary deck of cards and then 
cut it into three heaps. He’ll bet you $20 that at least one of the 
topmost cards is a king, queen, or jack. Should you take the bet?  
 
Source: O’Shea, O. (2016). The call of the primes: Surprising patterns, 

peculiar puzzles, and other marvels of mathematics. Amherst, NY: Prometheus. 
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Tangents 
Extracurricular Opportunities for Students 

 
his column highlights local and national extracurricular opportunities for K-12 students 
interested in mathematics, including collaborative, individual, online, and in-person 
challenges, contests, and camps. For dates, registration procedures and applications, and other 

information about the contests listed, please head to the contest websites, included below the 
descriptions. If we have missed an event that should be on our list, please contact us at 
thevariable@smts.ca. 
 
If you are looking for contests available in other provinces, head to the Canadian Mathematical 
Society website (cms.math.ca/Competitions/othercanadian). The CMS also maintains a list of 
resources for students who are looking to build their problem-solving skills and succeed in 
competitions: see cms.math.ca/Competitions/problemsolving. 
 

 
 

Canadian Math Kangaroo Contest 
Written in March 
 

The purpose of this competition is to introduce youngsters from Grade 1 to Grade 12 to 
math challenges in a fun and enjoyable way, thus inspiring their further interest and 
advancement in mathematics. The competition is held yearly in more than 50 Canadian 
cities. Students may choose to participate in English or in French. 
 

More information at https://mathkangaroo.ca  
 
Canadian Team Mathematics Contest 
Written in April 
Presented by the Centre for Education in Mathematics and Computing (University of Waterloo) 
 
The Canadian Team Mathematics Contest (CTMC) is a fun and challenging competition for 
teams of 6 secondary school students in any combination of grades. One teacher and groups 
of six students participate at their own school over 3 consecutive hours. The curriculum 
and level of difficulty of the questions will vary. Junior students will be able to make 
significant contributions but teams without any senior students may have difficulty 
completing all the problems. 
 
More information at www.cemc.uwaterloo.ca/contests/ctmc.html  
 

T 
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Caribou Mathematics Competition 
Held six times throughout the school year 
 

The Caribou Mathematics Competition is a worldwide online contest that is held six times 
throughout the school year. Each of these days, five contests are offered, one for each of the 
grade levels 3/4, 5/6, 7/8, 9/10 and 11/12 and each one in English, French and Persian. 
The Caribou Cup is the series of all Caribou Contests in one school year. Each student’s 
ranking in the Caribou Cup is determined by their performance in their best 5 of 6 contests 
through the school year. 
 

More information at cariboutests.com 
 
Euclid Mathematics Contest 
Written in April 
Presented by the Centre for Education in Mathematics and Computing (University of Waterloo) 
 

The Euclid Mathematics Contest is an opportunity for students in their final year of 
secondary school and motivated students in lower grades to have fun and to develop their 
mathematical problem solving ability. Most of the problems are based on the mathematical 
curriculum up to and including the final year of secondary school. Most of the problems 
are based on curricula up to and including the final year of secondary school. Some content 
might require students to extend their knowledge and the best way to familiarize oneself 
with commonly appearing topics is to practice using past contests. 
 

More information at www.cemc.uwaterloo.ca/contests/euclid.html 
 
Fryer, Galois, and Hypatia Mathematics Contests 
Written in April 
Presented by the Centre for Education in Mathematics and Computing (University of Waterloo) 
 

The Fryer, Galois and Hypatia Math Contests are an opportunity for students to write a 
full-solution contest. They are fun way to develop mathematical problem solving skills 
through a written mathematical activity. For students in Grades 9 (Fryer), 10 (Galois) and 
11 (Hypatia). Questions are based on curriculum common to all Canadian provinces. Rather 
than testing content, most of the contest problems test logical thinking and mathematical 
problem solving. 
 

More information at www.cemc.uwaterloo.ca/contests/fgh.html 
 
Gauss Mathematics Contests 
Written in May 
Presented by the Centre for Education in Mathematics and Computing (University of Waterloo) 
 

The Gauss Contests are an opportunity for students in Grades 7 and 8, and interested 
students from lower grades, to have fun and to develop their mathematical problem solving 
ability. Questions are based on curriculum common to all Canadian provinces. The Grade 
7 contest and Grade 8 contest is written by individuals and may be organized and run by 
an individual school, by a secondary school for feeder schools, or on a board-wide basis. 
 

More information at www.cemc.uwaterloo.ca/contests/gauss.html 
 
Opti-Math 
Written in March 
Presented by the Groupe des responsables en mathématique au secondaire 
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A French-language mathematics challenge for secondary students who would like to 
exercise and develop their problem-solving skills.  
 
Les Concours Opti-Math et Opti-Math + sont des Concours nationaux de mathématique 
qui s’adressent à tous les élèves du niveau secondaire (12 à 18 ans) provenant des écoles du 
Québec et du Canada francophone. Ils visent à encourager la pratique de la résolution de 
problèmes dans un esprit ludique et à démystifier, auprès des jeunes, les modes de pensée 
qui caractérisent la mathématique. Le principal objectif des Concours est de favoriser la 
participation bien avant la performance. La devise n’est pas : « que le meilleur gagne » mais 
bien « que le plus grand nombre participe et s’améliore en résolution de problèmes ». 
 

More information at www.optimath.ca/index.html  
 
Pascal, Cayley, and Fermat Contests 
Written in February 
Presented by the Centre for Education in Mathematics and Computing (University of Waterloo) 
 

The Pascal, Cayley and Fermat Contests are an opportunity for students in Grades 9 (Fryer), 
10 (Galois)m and 11 (Hypatia) to have fun and to develop their mathematical problem 
solving ability. Early questions require only concepts found in the curriculum common to 
all provinces. The last few questions are designed to test ingenuity and insight. Rather than 
testing content, most of the contest problems test logical thinking and mathematical 
problem solving. 
 

More information at www.cemc.uwaterloo.ca/contests/pcf.html 
 
The Virtual Mathematical Marathon 
Supported by the Canadian National Science and Engineering Research Council 
 

The virtual Mathematical Marathon  has been developed by an international team of 
mathematicians, mathematics educators, and computer science specialists with the help of 
the Canadian National Science and Engineering Research Council. 
 

The main activity is a competition allowing students to enjoy solving challenging 
mathematical problems all year around. Students can join the game at any time and at no 
cost, simply creating an individual profile with an individual username and a password. 
Available in French. 
 

More information at  www8.umoncton.ca/umcm-mmv/index.php  
 

Problems to Ponder 
 
Sums of Three Cubes 
Both 11 and 12 can be written as the sum of the cubes of three integers:  
 

												11	 = 	 3/ 	+	(– 2)/ 	+	(– 2)/           12	 = 	 7/ 	+	10/ 	+	(– 11)/  
 

Which of the numbers from 1-100 can be written as the sum of the cubes of three 
integers?  
 
Source: https://mei.org.uk/?section=resources&page=month_item 
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Math Ed Matters  
by MatthewMaddux 

 
 
Math Ed Matters by MatthewMaddux is a column telling slightly bent, untold, true stories of 
mathematics teaching and learning. 

Semicircular Reasoning in the Math Class: It’s Not a Teaching 
Strategy Because It’s Not 
Egan J Chernoff 
egan.chernoff@usask.ca 

 
n a previous article1, I defined the notion of a mathematical abhorithm as an abhorrent 
mathematical algorithm. In that article, I deemed an algorithm “abhorrent” if the 
mathematical algorithm (i.e., the set of rules used to correctly solve a mathematics 

problem) has no mathematical basis, ignores any underlying mathematical basis, or if the 
link between the abhorithm and any mathematical basis is not adequately taught. I also 
noted that, much like mathematical algorithms, mathematical abhorithms are, 
unfortunately, epidemic in many mathematics classrooms. Far from being harmless, they 
represent a tremendous blind spot in the teaching and learning of mathematics. After 
putting the finishing touches on the article, I thought I was done writing about abhorithms. 
Nope. 
 
Change is the Only Constant  
I’ve noticed in the last little while that the conversations I have about the teaching and 
learning of mathematics have changed. I’m not talking about conversations with 
colleagues—that is, other math educators. And, I’m not talking about conversations with 
those who have a vested interest in the teaching and learning of mathematics—that is, math 
teachers, mathematicians and their ilk. I’m talking about conversations about the teaching 
and learning of mathematics with members of the general public. Let’s look at a few 
examples that help identify the change that I’m referring to.  
 
As everyone knows, what one does for a living often comes up as a topic of conversation. 
The title for my job, technically, is “professor of mathematics education;” however, as I’ve 
found out over and over again, this title is rather confusing. These days, to avoid confusion, 
I tell people that I meet that I teach future math teachers. I’ll be honest: It’s not a phrase that 
                                                
1 Chernoff, E. J. (2017). Abhorrent mathematical algorithms: Mathematical abhorithms. The 

Variable, 2(5), 44-50. 
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I’m completely satisfied with, and I’ve gone through various versions of the phrase, 
including “I teach prospective math teachers,” “I work with future math teachers,” and “I 
teach classes that future math teachers take while in school,” but for whatever reason, 
“teaching future math teachers” is the one that lands for everybody and allows us to move 
on in the conversation. Perhaps you know what’s coming next.  
 
Once it has been established that I teach future math teachers, recent changes to the teaching 
and learning of mathematics (e.g., curricular changes, wordy textbooks, calculator use, 
“new math,” etc.) are on the tip of everybody’s tongue. Previously, I would often bear the 
brunt of the ire resulting from peoples’ attempts to help children, to no avail, with their 
math homework. Whether it was parents helping their kids, grandparents helping their 
grandkids, aunts and uncles helping nieces and nephews, or any other combination of an 
adult attempting to help a child with their school mathematics homework, the question 
directed at me was often some version of “Why is math taught differently now?” This 
question, as I would come to find out through further conversation, was often a veiled 
admittance that the adult was not able to help a child with their math homework, for 
whatever reason. And, it would often be followed up with, “Back in my day…” For 
example, “Back in my day, you would just put a tick mark in the next column and you got 
on with it. And, for the life of me, I can’t figure out why anybody would teach addition 
from left to right.” Or, my favourite, a version of a classic saying: “Back in my day, you 
didn’t understand math, you just got used to it.” As I said earlier, though, these 
conversations are changing.  
 
The Hockey Rink Dressing Room 
I realized that this change was taking place during the conversations about the teaching 
and learning of mathematics that consistently came up for discussion in the hockey rink 
dressing rooms that I frequent three to four times a week. (I should admit that I use the 

hockey rink dressing room as a barometer for many things in 
life. Political, financial, vehicular—you name it, you’ll learn a lot 
if you listen closely when getting dressed and undressed before 
and after a hockey game.) What came as quite a surprise to me 
was that the conversations I was used to having about changes 
in the math class were no longer taking place.  
 
The exact details aren’t necessary; let’s just say that I started 
skating for an additional team. As I got to know the team and 
the team got to know me, we got comfortable with each other 
quickly over a few short weeks. Then, it happened: “Hey 
Chernoff, what’s your day job?” To which I gave my now-
standard reply about working with future math teachers. “You 
do, huh. Hey, you know that new math that they’re doing in 

schools…” I thought to myself, “Oh boy, here we go.” My new teammate then continued, 
“I’m the one who does math homework with my daughter.” I said something stupid, like, 
“That’s cool.” He continued, “Yeah, she’s been showing me all these different approaches 
for adding and subtracting fractions. I didn’t really get what she was doing at first because 
she was using sticks and blocks and drawing pictures. Me, I used to just multiply three 
times and get the answer.” As I began to let out a little smile, I just had to ask: “And, what 
do you think?”  
 
In the past, this prompt was typically met with derision, but, like I said, things have 
changed. “Well, math is a tricky subject. I guess it’s important to show kids different ways 
of looking at things if they don’t really get it. Hell, the only reason I’m the one who does 
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math homework with our daughter is because I got better grades in math than my wife. I 
mean, just barely better grades, but she uses it as an excuse to not have to be the math-
homework-person in the house.” He continued, “You know what though, I’m learning 
things. Heck, my daughter’s even teaching me things about math that would’ve helped me 
when I was learning it myself!” It was at this point that I was unable to fully control the 
smile on my face. I won’t go into all the other similar conversations that I’ve been having, 
because I’m able to say, with confidence, that the larger message is similar to the one 
embedded in the dressing room exchange I’ve just presented. 
Changes to the teaching and learning of mathematics are taking 
root, and young people might just be the linchpin to larger 
acceptance of these changes, as is the case with many other issues 
(e.g., climate change) in today’s world.  
 
Change, as they say, is good. We’re all good then, right? Well, if 
I’m being honest, I’m a little concerned about what’s coming next 
in math class. These next phases are quite crucial for any sea-
change in the teaching and learning of mathematics. If we accept, 
as a premise, a new math class zeitgeist—a math class that embraces mathematics as the 
science of pattern and order, emphasizes discussion, emphasizes student understanding, 
and teaches concepts using different strategies according to students’ different learning 
needs; a math class that looks hardly anything like the math class my teammate took all 
those year ago—fine. There are, however, new responsibilities.  
 
Abhorithmic Exchanges 
Perhaps the most pressing ramification of this new mathematics education world order is 
that the job of a math teacher just became much more difficult. Yes, the job of math teacher 
was already difficult; however, in this new world order, the days of “Put your hand down, 
I’m not taking questions for the remainder of the period” is also over. Be careful what you 
wish for, as they say.  
 
To help paint this picture, I’m going to recreate a few of my more memorable abhorithmic 
exchanges. These exchanges are ones where I was either (1) the student, (2) the teacher or 
(3) I overheard while listening to two people discuss school mathematics. As you’ll see, this 
new math classroom, the one that we are perhaps moving towards, may not be any better 
than the one we are leaving behind.  
 
Multiplication of integers 
Easily my most memorable abhorithm came from my Grade 5 teacher, who was teaching 
the class why a negative number times a negative number resulted in a positive number. 
As they stood at the front of the room, index fingers pointed at each other at about eye level, 
they started to slowly move the fingers toward each other, with one of the index fingers 
changing from a horizontal position to a vertical position, finally resulting in a plus sign. 
For good measure, the sound “Bwoooooop!” was made during the process. Super 
memorable, easy to understand and, to be honest, I never got a question involving integer 
multiplication wrong after that lesson. There’s just one problem: “Bwoooooop!” is an 
abhorithm. The days of abhorithms, arguably, are over. So what if “Bwoooooop!” was 
replaced with the following exchange? 
 

Egan: Excuse me, Mr. Chernoff, I have a question.  
Mr. Chernoff: Yes, Egan… I always love answering your insightful questions. 
Egan: Why is it that negative five times negative two is positive ten? 
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Mr. Chernoff: Well, Egan, remember when I told you that a negative number times a 
negative number results in a positive number? 
Egan: Yes, Mr. Chernoff, I have that written down in my notes from today’s class. 
Mr. Chernoff: Ok then, is negative five negative? 
Egan: Yes. 
Mr. Chernoff: And, is negative two negative?  
Egan: Yes. 
Mr. Chernoff: Well then, the answer is positive because we are multiplying two 
negatives.  

 
That’s much better… right?! Before I weigh in, let’s consider another example.  
 
Solving Equations 
One of my other favourite abhorithms involves solving linear equations. Like most 
abhorithms, it’s simple, concise and, if you just go along with it, you’ll never solve a linear 
equation incorrectly for the rest of time. When solving equations, when you drag a number 
across the equals sign you change plus to minus or minus to plus. You may have even heard 
the next line, which goes something like “reasons for this we will not discuss,” which 
applies to many abhorithms. I was even once told that when you drag a number across the 
equals sign that magic pixie dust falls from the sky and changes the sign. Should you need 
a visual, x + 2 = 4 becomes x = 4 – 2 because, well, it was dragged across the equals sign 
which cued the pixie dust sprinkle. Clearly, a mathematical abhorithm is at play. However, 
as we’ve discussed, we’re at the dawn of a new world order in math class. And so, instead, 
the following exchange might take place: 
 

Egan: Excuse me, Mr. Chernoff, I have a question.  
Mr. Chernoff: Yes, Egan. 
Egan: I’m trying to solve this equation, and I’m trying my best to follow the notes 
you gave us, but why does this minus 13 become a plus 13? 
Mr. Chernoff: Remember what I said during the lecture, Egan: positive numbers 
become negative numbers when you drag them across the equal sign. And, what 
else did I say during the lecture? 
Egan: I think I have that written down, hold on a sec… is this it: positive numbers 
become negative numbers when you drag them across the equal sign AND negative 
numbers become positive numbers when you drag them across the equal sign. 
Mr. Chernoff: Right. It’s nice to see you finally taking notes, Egan. Ok, back to your 
question. Is the number you’re talking about here a negative number? 
Egan: Yes. Minus 13. 
Mr. Chernoff: And, are you dragging it across the equal sign? 
Egan: Yes. 
Mr. Chernoff: So… 
Egan: …it becomes positive 13?! 
Mr. Chernoff: Good! Now, and here’s the big question, why? 
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Egan: Umm, because negative numbers become positive numbers when you drag 
them across the equals sign… 
Mr. Chernoff: Excellent, it seems like you’re finally starting to understand things in 
math class. Good for you! 

 
Much, much better, right?! Look, I know it’s obvious that I’ve been attempting to set you 
up with these last two examples. Let’s dig into them a bit further. 
 
Semicircular Reasoning 
So, let’s just get to the problem, a new problem in this new math class. The change—that is, 
the move from abhorithm to abhorithmic exchange—might appear to be better, at first. After 
all, students aren’t just being told what to do in these instances. They seem to be getting 
explanations, a peek behind the curtains if you will, of the mathematics behind why exactly 
a negative times a negative is a positive, or what is actually happening when you solve an 
equation. Alas, an explanation is not what they are getting. And abhorithmic exchanges, I 

contend, are no better than abhorithms. Even though such 
exchanges appear to be an improvement over abhorithms, 
they are nothing but instances of logically fallacious, circular 
reasoning.  
 
As you probably know, circular reasoning is a logical fallacy 
where propositions are supported by premises, which in turn 
are supported by the same propositions—thus, creating a 
circle. Perhaps some non-math-class examples are 
appropriate at this point. Nineteen-year-olds have the right to 
drink because it's legal for them to drink is an example of circular 
reasoning (and, further, an example of begging the question). 
Here’s another: Something can't come from nothing; thus, the Big 
Bang cannot have happened. The issue, of course, is that the 

conclusion is assumed in the premise. Believe it or not, I have a favourite example because, 
well, it really hit home for me. 
 
Consider the conversations many teenagers have about curfew with their parents. You’ve 
probably had these conversations yourself. Maybe, when you were younger, you had a 
curfew at, say, 11:00 p.m. At some point, you probably began to question your curfew. You 
may have even asked your Mom, your Dad, or whomever about the details of your curfew. 
Try as you might, however, you were unable to crack the reasoning associated with your 
curfew. Chances are, this is because the conversation about your curfew involved circular 
reasoning. You may have asked why you have to be home by 11:00 p.m., to which they 
replied that 11:00 p.m. is your curfew. You may have even appealed to the fact that all of 
your friends were able to come home at a later time than you, say 12:00 a.m., and you would 
ask why you, too, weren’t allowed to stay out to 12am, to which they probably replied 
again, to your great frustration, that your curfew was at 11:00 p.m. Here again, the 
proposition (you must come home at 11:00 p.m.) is supported by the premise (curfew is at 
11pm), which is supported by the proposition (you must come home at 11:00 p.m.). Because 
of this, there is a “circle” in the reasoning, meaning that, in essence, your curfew 
conversation is going nowhere. In general, there is a logical form to circular reasoning: X is 
true because of Y. Y is true because of X. This brings me to my use of the term “semicircular 
reasoning” as opposed to “circular reasoning” in the title of and throughout this article.  
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My use of “semicircular reasoning” is an attempt to not lose the forest for the trees when 
looking at this potential issue in the math class. In other words, I want to avoid the 
argument that, if the reasoning does not explicitly follow the logical form of circular 
reasoning then, somehow, we’re all off the hook. Semicircular reasoning, then, is a term I 
use to describe any instance of an abhorithmic exchange that even has a hint of circular 
reasoning. Looking back to the first example I gave in the math 
class, when the teacher is asking the student whether or not the 
number they see in front of them is negative or not, they are 
doing so with the conclusion being assumed in the premise. This 
particular abhorithmic exchange, then, is an example of 
semicircular reasoning. And at this point, we need to ask 
ourselves if sharing semicircular reasoning with our students is 
any better than “Bwoooooop!” Similarly, asking the student 
whether or not they dragged the number across the equal sign 
does not get us any closer to a mathematically sound justification 
and explanation as to what is really going on when we’re solving 
linear equations in the math classroom.  
 
Analyzing Abhorithmic Exchanges for Semicircular Reasoning 
Concerningly, perhaps alarmingly, if you really start looking and listening for the use of 
semicircular reasoning in the math class then it might start to appear more than you’d like. 
Consider the following example.  
  

Egan: Excuse me, Mr. Chernoff, I have a question.  
Mr. Chernoff: Of course you do, Egan. 
Egan: I’m trying my best to follow the notes that I wrote down during your lecture… 
I was just wondering, why do we change the division sign to a multiplication sign 
and put the number on the bottom on the top and the number on the top on the 
bottom for the second number? 
Mr. Chernoff: Well, Egan, what question are you working on? 

Egan: This one, from the homework: 3 ÷ ,
-
. 

Mr. Chernoff: Hmm, maybe you weren’t listening during the lecture, Egan, but let’s 
see if you maybe remember. What did I say was the first rule for dividing fractions? 
Egan: You never divide fractions? 
Mr. Chernoff: Right, we never divide fractions. Instead, we… 
Egan: Multiply… 
Mr. Chernoff: Right. And how do we multiply fractions? 
Egan: We change the division sign to a multiplication sign and then put the number 
on top on bottom and the number on bottom on top. 
Mr. Chernoff: See, you understood what you were doing all along. 

 
Analyzing the abhoritimic exchange through the lens of semicircular reasoning, the student 
is no closer to learning the mathematical underpinnings as to why you change the sign and 
put the number on top on the bottom and the number on the bottom on top. The 
conclusion—that is, to change the sign and put the number on the top on bottom and the 
number on the bottom on top, is assumed in the premise. What we have then, are instances 
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of students looking for the conclusion in their textbooks and elsewhere and then being 
rewarded when they are able to identify a division of fractions question. Unfortunately, 
semicircular reasoning is definitely not the change that is supposed to be taking place in 
the math class. Consider the following exchange: 
 

Egan: Excuse me, Mr. Chernoff, I have a question. 
Mr. Chernoff: Sure thing, Egan. 
Egan: You said that when we’re converting from a decimal to a percent that we move 
the decimal point two places to the right. 
Mr. Chernoff: That’s exactly what I said. 
Egan: I guess my question is why we’re moving it to places to the right? 
Mr. Chernoff: Because you’re multiplying by 100, Egan! 
Egan: Ok, I guess… 

 
The above exchange reminds me, and perhaps it reminds you, of the curfew conversation. 
Circular reasoning should not have worked for your parents when you asked to stay out a 
bit later; alas, it did. Semicircular reasoning does not and should not work in math class. 
Period. 
 
Moving the Goalposts 
The argument could be made that this potential issue could be avoided by teaching the 
abhorithms and “just getting on with it.” After all, if students learn to simply move the 
decimal over when converting a percentage to a fraction, then the damage, I contend, is 
localized. However, if they listen to the fallacious reasoning that is being used to support 
the abhorithm, then there are now two instances of damage. In the worst-case scenario, a 
student, let’s say it’s a bright student, notices a pattern that’s starting to emerge while 
they’re learning mathematics—that is, whether the teacher is teaching multiplication of 
integers, solving equations, fraction division, or converting between decimals and 
percentages, the reasoning behind all of these topics appears to the student to be one and 
the same, so maybe math isn’t that difficult after all. In other words, the damage has spread. 
 
As Garth Algar famously said, “We fear change.” When it comes to a math class that is 
purported to be digging deeper into the mathematics but, instead, is relying on 
semicircular, fallacious reasoning when attempting to clarify the school mathematics that 
students are attempting to learn, just give me the abhorithm (something I never, ever 
thought I’d say), because it might be less damaging in the end. Coincidentally, some might 
say ironically, utilizing the logical fallacy of semicircular reasoning to explain mathematical 
abhorithms could even result in another logical fallacy; me, I’d rather just keep the goal 
posts where they are. After all, semicircular reasoning in not a teaching strategy, because 
it’s not. 
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Contributions 

 

The Variable is looking for contributions from all members of 
the mathematics education community, including classroom 
teachers, consultants, and teacher educators. Consider sharing a 
favorite lesson, an essay, a book review, or any other work of 
interest to mathematics teachers in Saskatchewan. Articles may be 
written in English or French. If accepted for publication, your 
article will be shared with a wide audience of mathematics 
educators in Saskatchewan and beyond. 

We also welcome student contributions in the form of artwork, 
stories, interesting problem solutions, or articles. This is a great 
opportunity for students to share their work with an audience 
beyond that of their classroom, and for teachers to recognize 
students’ efforts during their journey of learning mathematics. 

All work is published under a Creative Commons license. To 
submit or propose an article, please contact us at 
thevariable@smts.ca. We look forward to hearing from you! 

Ilona & Nat,  
Editors 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 




